On Zero Duality Gap and the Farkas Lemma for Conic Programming

نویسنده

  • Constantin Zalinescu
چکیده

Recently S.A. Clark published an interesting duality result in linear conic programming dealing with a convex cone that is not closed in which the usual (algebraic) dual problem is replaced by a topological dual with the aim to have zero duality gap under certain usual hypotheses met in mathematical finance. We present some examples to show that an extra condition is needed for having the conclusion; this supplementary condition is also provided. We also give counterexamples for three results on hedging prices and simple proofs for two known solvability results (see Propositions 4.1 and 4.2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Linear Programming and its Application for a Constructive Proof of a Fuzzy Version of Farkas Lemma

The main aim of this paper is to deal with a fuzzy version of Farkas lemma involving trapezoidal fuzzy numbers. In turns to that the fuzzy linear programming and duality theory on these problems can be used to provide a constructive proof for Farkas lemma. Keywords Farkas Lemma, Fuzzy Linear Programming, Duality, Ranking Functions.

متن کامل

New stopping criteria for detecting infeasibility in conic optimization

Detecting infeasibility in conic optimization and providing certificates for infeasibility pose a bigger challenge than in the linear case due to the lack of strong duality. In this paper we generalize the approximate Farkas lemma of Todd and Ye [12] from the linear to the general conic setting, and use it to propose stopping criteria for interior point algorithms using self-dual embedding. The...

متن کامل

WEAK AND STRONG DUALITY THEOREMS FOR FUZZY CONIC OPTIMIZATION PROBLEMS

The objective of this paper is to deal with the fuzzy conic program- ming problems. The aim here is to derive weak and strong duality theorems for a general fuzzy conic programming. Toward this end, The convexity-like concept of fuzzy mappings is introduced and then a speci c ordering cone is established based on the parameterized representation of fuzzy numbers. Un- der this setting, duality t...

متن کامل

Linear programming duality and morphisms

In this paper we investigate a class of problems permitting a good characterisation from the point of view of morphisms of oriented matroids. We prove several morphism-duality theorems for oriented matroids. These generalize LP-duality (in form of Farkas’ Lemma) and Minty’s Painting Lemma. Moreover, we characterize all morphism duality theorems, thus proving the essential unicity of Farkas’ Lem...

متن کامل

An Easy Way to Obtain Strong Duality Results in Linear, Linear Semidefinite and Linear Semi-infinite Programming

In linear programming it is known that an appropriate nonhomogenious Farkas Lemma leads to a short proof of the strong duality results for a pair of primal and dual programs. By using a corresponding generalized Farkas lemma we give a similar proof of the strong duality results for semidefinite programs under constraint qualifications. The proof includes optimality conditions. The same approach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Oper. Res.

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2008